Exam III Solutions

Part 1: Multiple Choice

Total Points: 68 (4 points per question)

$\mathbf{TEST} \mathbf{A}$	TEST
1. B	1. B
2. D	2. B
3. C	3. D
4. B	4. B
5. C	5. B
6. B	6. A
7. B	7. D
8. A	8. E
9. B	9. B
10. E	10. B
11. B	11. B
12. B	12. A
13. B	13. B
14. A	14. C
15. B	15. B
16. B	16. D
17. D	17. C

Part 2: Written Section

Total Points: 32

1

(A)
$$\hat{p} \pm Z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = .59 \pm 1.96 \sqrt{\frac{.59(.41)}{174}} = .59 \pm 1.96(.05) = .59 \pm .098 = (.50, .69)$$

 \mathbf{B}

(B)
$$H_o: p = .65~vs.~H_a: p \neq .65$$

(C)
$$\alpha = 1 - C = 1 - .95 - .05$$

- (D) Fail to reject H_o because .65 is in the 95% confidence interval (.50, .69)
- (E) Americans and Canadians have the same proportion of people that own cars (65%).

$\mathbf{2}$

(A) $H_o: \mu_1 = \mu_2 \ vs. \ H_a: \mu_1 > \mu_2$ (assuming 1=girls involved in sports and 2=girls not involved in sports)

(B)
$$Z = \frac{(X_1 - X_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = Z = \frac{(3.01 - 2.85) - (0)}{\sqrt{\frac{.41^2}{30} + \frac{.29^2}{44}}} = .16/.09 = 1.78$$

(C)
$$Z \sim N(0, 1)$$

(D)
$$p - value = P(Z > 1.78) = .0375$$

- (E) Reject H_o because $p-value < \alpha$
- (F) Girls involved in high school sports have higher GPAs than girls not involved in high school sports.