HOMEWORK 2 SOLUTIONS - 85 total points

Lecture 2 & 3 material

- 1 Table 1.6 on page 33 of the text book gives CO_2 emmissions per person from countries with populations over 20 million.
 - a. Find the 5-number summary for this data set and use it to make a boxplot. Does the distribution look right-skewed?

5 number summary is Min=0, Q_1 =.75, M=3.2, Q_3 =7.8, Max=17 with one extreme outlier=19.9.

- b. Are there any suspected outlier? If so, make sure to account for them on your boxplot. IQR=7.8-.75=7.05 so suspected outliers if $X < Q_1 - 1.5(IQR) = -9.83$ or $X > Q_3 + 1.5(IQR) = 18.38$. There is one outlier, USA emmissions per person is 19.9 which is greater than 18.38.
- c. Find the mean CO_2 emmissions per person. Explain why the mean and median differ so greatly for this distribution. $\bar{X} = \frac{2.3+3.9+17+0.2+...+0.5}{48} = 4.61$ The mean is greater than the median because this distribution is right-skewed meaning it has more larger values.

- 2 The CDC reports that in 2003 the weight of a baby at birth is normally distributed with mean 7.33 pounds and standard deviation of 1.26 pounds.
 - a. One baby is selected at random and it's weight is 9.1 pounds. What is the Z-score for this observation? $Z = \frac{9.1-7.33}{1.26} = 1.41$
 - b. What does this Z-score tell us about this particular baby's relationship to the mean? This baby's weight (9.1 pounds) is 1.41 standard deviations above the mean.
 - c. Low Birth Weight is considered a newborn baby weighing less than 5.51 pounds. Sketch the normal curve for the distribution of birth weight. Shade the area representing the proportion of babies that have Low Birth Weight.

- d. Now, find the Z-score for a baby weight of 5.51. What does this Z-score tell us about the relationship between an observed weight of 5.51 pounds and the mean? $Z = \frac{5.51-7.33}{1.26} = -1.44$ This tells us that the weight 5.51 is 1.44 standard deviations below the mean.
- e. Sketch the standard normal curve and shade the area representing the proportion of babies born with Low Birth Weight.

- f. Using Table A find this proportion of babies born with Low Birth Weight. Look for Z=-1.44 gives proportion .0749 = 7.59%
- g. If I chose one baby at random, what's the probability that I would get a big, fat, healthy baby weighing more than 10 pounds?

First find the Z-score that corresponds to 10 pounds: $Z = \frac{10-7.33}{1.26} = 2.12$. The corresponding probability in the table fo Z=2.12 is .9830. We want the proportion greater than 10 not less than 10 so the probability of me choosing a baby at random that is bigger than 10 pounds is 1-.9830=0.017=1.7%

3 Do textbook problems 1.86, 1.98, 1.99, 1.100, 1.101 and 1.106

1.86: Length \sim N(266, 16) which is symmetric and mound-shaped so we can use the Empirical Rule.

(a) 95% of values fall within 2s of the \bar{x} so 95% of pregancies last between 234 and 298 days.

(b) The shortest 2.5% of pregnancies last less than 234 days. The longest 2.5% of pregnancies last more than 298 days.

For the next 5 problems we know SAT~ $N(\mu = 1026, \sigma = 209)$ and ACT~ $N(\mu = 20.8, \sigma = 4.8)$:

1.98:
$$Z_{SAT} = \frac{1318 - \mu_{SAT}}{\sigma_{SAT}} = \frac{1318 - 1026}{209} = 1.40$$
 and $Z_{ACT} = \frac{27 - \mu_{ACT}}{\sigma_{ACT}} = \frac{27 - 20.8}{4.8} = 1.29$

Now we can compare Z_{SAT} to Z_{ACT} and we see that $Z_{SAT}=1.40$ is higher so Tonya scored higher than Jermaine.

1.99:
$$Z_{SAT} = \frac{670 - \mu_{SAT}}{\sigma_{SAT}} = \frac{670 - 1026}{209} = -1.70$$
 and $Z_{ACT} = \frac{16 - \mu_{ACT}}{\sigma_{ACT}} = \frac{16 - 20.8}{4.8} = -1.00$

Now we can compare Z_{SAT} to Z_{ACT} and we see that Z_{SAT} =-1.00 is higher so Jacob scored higher than Emily.

1.100: $Z_{SAT} = \frac{1287 - \mu_{SAT}}{\sigma_{SAT}} = \frac{1287 - 1026}{209} = 1.25$ A Z-score of 1.25 is equivalent to what ACT score?

$$1.5 = \frac{ACT - \mu_{ACT}}{\sigma_{ACT}} = \frac{ACT - 20.8}{4.8}$$

Now, solve for ACT: $4.8(1.25) = ACT - 20.8 \rightarrow 6 + 20.8 = ACT \rightarrow ACT = 26.8.$

1.101: Just like 1.100

 $Z_m = \frac{28 - 20.8}{4.8} = 1.5$ and $1.5 = \frac{X_{SAT} - 1026}{209} \rightarrow X_{SAT} = 1339.5$

1.106: The top 10% corresponds to the everything above the z-score where $P(Z < Z^*) = .90$. Using Table A, $Z^* = 1.29 = \frac{X_{SAT} - 1026}{209} \approx 1295$. So, all SAT scores higher than 1295 represent the top 10% of all scores.